已知數列a1=a2=1,且a(n+2)-a(n)=1/a(n+1),求a(2020)?
回答 (1)
a(n+1)a(n+2) - a(n+1)a(n) = 1, for all n in N
∴ a(n+2)a(n+1) = a(n+1)a(n) + 1 = a(2)a(1) + n, for all n in N
∴ a(n+2) = (a(2)a(1) + n)/a(n+1)
= (n+1)/a(n+1)
= [(n+1)/(n)]a(n), for all n in N
∴ a(n) = [(n-1)/(n-2)] a(n-2)
= [(n-1)/(n-2)](n-3)/a(n-3)
= [(n-1)(n-3)]/[(n-2)(n-4)] a(n-4)
n = 2k-1, k in N, 則
a(n) = [(n-1)(n-3)…2]/[(n-2)(n-4)…1] a(1)
= [(2k-2)(2k-4)...2]/[(2k-3)(2k-5)...1]
= [(2k-2)(2k-4)...2]^2/(2k-2)!
= [2^(k-1) (k-1)!]^2/(2k-2)!
= 2^(n-1){[(n-1)/2]!}^2/(n-1)!
n = 2k, k in N, 則
a(n) = [(n-1)(n-3)…3]/[(n-2)(n-4)…2] a(2)
= [(2k-1)(2k-3)...3]/[(2k-2)(2k-4)...2]
= (2k-1)!/[(2k-2)(2k-4)...2]^2
= (n-1)!/{2^(n-2)[(n/2-1)!]^2}
∴ a(2020) = 2019!/{2^2018(1009!)^2}
收錄日期: 2021-05-04 00:38:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20210318122521AAhVzg9
檢視 Wayback Machine 備份