✔ 最佳答案
x^3/[(y+1)(z+1)]+y^3/[(z+1)(x+1)]+z^3/[(x+1)(y+ 1)]
= [x^3(x+1)+y^3(y+1)+z^3(z+1)]/[(x+1)(y+1)(z+1)]
≧ (x^3+y^3+z^3)[(x+y+z+3)/3]/[(x+1)(y+1)(z+1)]
(by 排序不等式, 或切比雪夫總和不等式)
= {(x^3+y^3+z^3)/[(x+1)(y+1)(z+1)]}.[(x+y+z+3)/3]
考慮 f(x,y,z) = (x^3+y^3+z^3)/[(x+1)(y+1)(z+1)]
在 xyz = 1 條件下, 用微積分的方法可求得最小值發生在
x = y = z = 1, 得 f(1,1,1) = 3/8.
又考慮 g(x,y,z) = (x+y+z+3)/3, 同樣在 xyz = 1 條件下,
最小值也發生在 x = y = z = 1 處, 得 g(1,1,1) = 2.
故 f(x,y,z).g(x,y,z) 在 xyz = 1 條件下最小值是
(3/8)(2) = 3/4, 於 x = y = z = 1 處.
但
x^3/[(y+1)(z+1)]+y^3/[(z+1)(x+1)]+z^3/[(x+1)(y+ 1)]
= h(x,y,z)
≧ f(x,y,z).g(x,y,z)
而等號於 x = y = z 時成立, 故, 在 xyz = 1 條件下,
h(x,y,z) ≧ f(x,y,z).g(x,y,z)
≧ f(1,1,1).g(1,1,1)
= h(1,1,1)
∴ min.{h(x,y,z): x, y, z > 0, xyz = 1}
= h(1,1,1) = f(1,1,1).g(1,1,1) = 3/4
說明:
(1) 排序不等式, 切比雪夫總和不等式.
設 a_1 ≦ a_2 ≦ ... ≦ a_n.
b_1 ≦ b_2 ≦ ... ≦ b_n
令 σ 為任一 n 元排列, 則
Σ a_i.b_i ≧ Σ a_i.b_σ(i) ≧ Σ a_i.b_(n+1-i)
由上列排序不等式, 易得切比雪夫總和不等式
Σ a_i.b_i ≧ (Σ a_i) (Σb_j)/n ≧ Σ a_i.b_(n+1-i)
(2) f(x,y,z) = (x^3+y^3+z^3)/[(x+1)(y+1)(z+1)]
在 xyz = 1 條件下, 用微積分的方法求極小.
一般此類問題是用 Lagrange multiplier, 但 L.M.
方法只是找到可能的極值, 究竟是極大或極小仍
待研討. 這裡藉由 xyz = 1 把 z 看成是 x, y 的函數,
令 f*(x,y) = f(x.y,z(x,y)), 故
Dx f* = Dx f + Dz f.Dx z
Dy f* = Dy f + Dz f.Dy z
為方便, 採對數形式, 即用 ln f(x,y,z) 代替 f(x,y,z),
f*(x,y) = ln f(x,y,z(x,y)). 則
Dx f*(x,y) = [3x^2/(x^3+y^3+z^3)-1/(x+1)]
- [1/(x^2y)] [3z^2/(x^3+y^3+z^3)-1/(z+1)]
Dy f*(x,y) = [3y^2/(x^3+y^3+z^3)-1/(y+1)]
- [1/(xy^2)] [3z^2/(x^3+y^3+z^3)-1/(z+1)]
令兩偏導式為 0, 得
3x^3/(x^3+y^3+z^3)-x/(x+1)
= 3y^3/(x^3+y^3+z^3)-y/(y+1)
= 3z^3/(x^3+y^3+z^3)-z/(z+1)
= [1/(x+1)+1/(y+1)+1/(z+1)]/3
可得 x = y = z = 1.
又可得在此處之二階偏導數之值:
Dx^2 f* = 9/2 = Dy^2 f*, DxDy f* = DyDx f* = 9/4
故其 hessian matrix 為正確定, 故, 在 x=y=z=1 得
f*(x,y) 以致 f(x,y,z) 在 xyz = 1 條件下之極小值.
(3) (x+y+z+3)/3 或 x+y+z 在 xyz = 1 之下之極小值
可類似方法求得, 不過並不需如上用連鎖律, 而直
接把 z = 1/(xy) 代入然後微分即可. 另外, 不微分
而直接用算幾不等式即可得其結果.