✔ 最佳答案
Σ_{k=1~n} (-1)^{k-1}C(n,k}/k
= Σ_{k=1~n} (-1)^{k-1}[C(n+1,k)-C(n,k-1)]/k
= Σ_{k=1~n} (-1)^{k-1}C(n+1,k)/k
- Σ_{k=1~n} (-1)^{k-1}C(n,k-1)/k
= Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)/k - (-1)^n/(n+1)
- [1/(n+1)]Σ_{k=1~n} (-1)^{k-1}C(n+1,k)
= Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)/k
- [1/(n+1)]Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)
= Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)/k
+ [1/(n+1)](Σ_{k=0~n+1} (-1)^kC(n+1,k) -1)
= Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)/k
+ [1/(n+1)](1-1)^(n+1)-1/(n+1)
= Σ_{k=1~n+1} (-1)^{k-1}C(n+1,k)/k - 1/(n+1)
令 Σ_{k=1~n} (-1)^{k-1}C(n,k}/k = p(n),
則前面得到的關係式可寫為:
p(n) = p(n+1) - 1/(n+1)
或:
p(n+1) = p(n) + 1/(n+1),
p(1) = 1
故得:
p(n) = 1+1/2+...+1/n