如圖,I為△ABC的內心,I在DE上,且DE//BC,若AB=8,AC=7,BC=5則DE=?

2016-01-03 12:13 pm

回答 (2)

2016-01-03 10:47 pm
✔ 最佳答案
Sol
I為△ABC的內心
BD=DI,CE=EI
DE=DI+IE=BD+CE=(AB-AD)+(AC-AE)=(AB+AC)-(AD+AE)=15-(AD+AE)
DE+AD+AE=15
△ABC~△ADE
AB/AD=AC/AE=BC/DE
8/AD=7/AE=5/DE=(8+7+5)/(AD+AE+DE)=20/15=4/3
DE=15/4
2016-01-03 2:26 pm
r=內心半徑
a,b,c=邊長=5,7,8
s=(a+b+c)/2=(5+7+8)/2=10

用 Hero's 方程式:
△面積=sqrt(s(s-a)(s-b)(s-c))
=sqrt(10(10-5)(10-7)(10-8))
=sqrt(10*5*3*2)
=10sqrt(3)

內心半徑=Area/s=10sqrt(3)/10=sqrt(3)


=2*Area/mBC
=2*10*sqrt(3)/mBC
=2*10*sqrt(3)/5
=4sqrt(3)

△ADE and △ABC are similar,
所以DE/BC=(4sqrt(3)-sqrt(3))/4sqrt(3)
mDE=mBC*(3/4)=15/4


收錄日期: 2021-04-18 14:20:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160103041353AAu6qCx

檢視 Wayback Machine 備份