求解 數學f(x)問題

2014-10-20 3:56 am


f(x) = {x(1+x)(2+x)(3+x).....(n+x)} / {(1-x)(2-x)(3-x)....(n-x)}

f'(0)答案如何

麻煩可以跟我說規律及求解過程如何嗎各位大大

回答 (6)

2014-10-20 4:44 am
✔ 最佳答案
f(x) = {x(1+x)(2+x)(3+x).....(n+x)} / {(1-x)(2-x)(3-x)....(n-x)}
設分母項為G(x),分子項為Q(x)
G(x) =(1-x)(2-x)(3-x)....(n-x)
Q(x) =x(1+x)(2+x)(3+x).....(n+x) = {x } {(1+x)(2+x)(3+x)....(n+x) }
Q'(x) = (x)' {(1+x)(2+x)(3+x)....(n+x) } +(x) {(1+x)(2+x)(3+x)....(n+x) } '
=(1+x)(2+x)(3+x) ....(n+x) + (x) {(1+x)(2+x)(3+x)....(n+x) } '

f(x) =Q(x)/G(x)
f '(x) ={ Q '(x) G(x)- Q(x)G'(x) }/ {G(x) } ^2
f '(0) = { Q '(0) G(0)- Q(0)G'(0) }/ {G(0) } ^2
= { (1×2×3×....×n)(1×2×3×....×n)- 0×G'(x) }/(1×2×3×....×n)
=1×2×3×....×n =n!

2014-10-19 20:51:11 補充:
更正 f '(0)

f '(0) = { Q '(0) G(0)- Q(0)G'(0) }/ {G(0) } ^2
= { (1×2×3×....×n)(1×2×3×....×n)- 0×G'(0) }/(1×2×3×....×n)^2
=1
參考: 我
2014-10-20 7:14 pm
sol:

由微分定義【 lim(x→a) { [ f(x) - f(a) ] / (x - a) }】知道

f'(0) = lim(x→0) { [ f(x) - f(0) ] / (x - 0) }

  = lim(x→0) { [ f(x) - 0 ] / x }

  = lim(x→0) { [ (1+x)(2+x)(3+x).....(n+x) ] / [ (1-x)(2-x)(3-x)....(n-x) ] }

  = n!/n!

  = 1
參考: 蔡老師
2014-10-20 4:06 pm
求f(x) ={x(1+x)(2+x)(3+x).....(n+x)}/{(1-x)(2-x)(3-x)....(n-x)}
f'(0)=?
Sol
f(0)=0
f'(0)=lim(h->0)_[f(h)-f(0)]/(h-0)
f'(0)=lim(h->0)_[{h(1+h)(2+h)(3+h).....(n+h)}/{(1-h)(2-h)(3-h)....(n-h)}h]
f'(0)=lim(h->0)_(1+h)(2+h)(3+h).....(n+h)}/{(1-h)(2-h)(3-h)....(n-h)}
=1

2014-10-20 6:48 am
令 f(x) = x g(x)
直接把 x 之外的整個令為 g(x)
這樣微分時就不需要用到分式的微分公式,計算會比較方便.
2014-10-20 6:42 am
h(x) = (1+x)(2+x)(3+x).....(n+x)g(x) = (1-x)(2-x)(3-x)....(n-x) f(x) = xh(x)/g(x)f’(x) = ((xh(x))’g(x) – xh(x)g’(x))/(g(x))^2f’(x) = (h(x)g(x) +xh’(x)g(x) – xh(x)g’(x))/(g(x))^2 f’(0) = h(0)g(0)/(g(0))^2 = n!n!/(n!)^2 = 1
2014-10-20 4:31 am
這里很不錯999shopping。com老婆很喜歡
唭俯凎厬乮


收錄日期: 2021-04-30 19:16:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141019000016KK04991

檢視 Wayback Machine 備份