✔ 最佳答案
1.若p為質數,有一次整係數多項式f(x),使得f(18)=2013,f(p)=1910,是求滿足上述條件的所有質數p之和為?
Sol
f(x)=a(x-18)+2013
f(p)=a(p-18)+2013=1910
a(18-p)=103
(1) a=1
p=-85
(2) a=103
p=17
(3) a=-1
p=111=3*37(4) a=-103
p=19
所有質數p之和=36
2.設a>o,若xy-2x+y=0且a^x=10^y=4,則a=?
Sol
a^x=10^y=4
a>0
xloga=y=log4
x=log4/loga
xy-2x+y=0
(log4/loga)*log4-2log4/loga+log4=0
log4/loga-2/loga+1=0
log4-2+loga=0
loga=2-log4=log25
a=25
3.以知P(a,b)為y=f(x)=log3_x上一點,Q(c,d)為y=g(x)=3^x上一點,若直線
PQ為x+y=8,問PQ中點為?
Sol
b=log3_a,a+b=8
a=3^b
b+3^b=8
d=3^c,c+d=8
c+3^c=8
b=c
a=d
(a+c)/2=(a+b)/2=4
(b+d)/2=(b+a)/2=4
PQ中點 (4,4)
4.試說明:2^2.3+2^2.5>2^3.4
Sol
2^2.3+2^2.5=(2^3.3+2^3.5)/2>=[(2^3.3)*(2^3.5)]^(1/2)=2^3.4
5.設x>0,已知logx-log5678是整數且│logx-log1234│<1,則logx的首數
可能為何?
Sol
設logx-log5678=n
logx=n+log5678=(n+2)+log5.678
│logx-log1234│<1
-1<log(x/1234)<1
1/10<x/1234<10
123.4<x<12340
log123.4<logx<log12340
log123.4<n+log5678<log12340
2+log123.4<2+n+log5678<2+log12340
2+log123.4-log5678<2+n<2+log12340-log5678
2+log123.4-log5678<2+n<2+log12340-log5678
log2.1733<2+n<log217..3
log10<=2+n<100
1<=2+n<=2
首數可能為1 or 2
2014-08-09 23:55:41 補充:
5.設x>0,已知logx-log5678是整數且│logx-log1234│<1,則logx的首數
可能為何?
Sol
設logx-log5678=n
logx=n+log5678=(n+3)+log5.678
│logx-log1234│<1
-1
2014-08-09 23:57:00 補充:
-1
2014-08-09 23:58:03 補充:
5.設x>0,已知logx-log5678是整數且│logx-log1234│<1,則logx的首數
可能為何?
Sol
設logx-log5678=n
logx=n+log5678=(n+3)+log5.678
│logx-log1234│<1