✔ 最佳答案
f(x) = x/[(x+2)(x+3)(x+4)]
= A/(x+2) + B/(x+3) + C/(x+4)
∴ x = A(x+3)(x+4) + B(x+2)(x+4) + C(x+2)(x+3)
分別以 x = -2, -3, -4 代入, 得
-2 = A(1)(2)
-3 = B(-1)(1)
-4 = C(-2)(-1)
∴ A = -1, B = 3, C = -2
f(x) = -1/(x+2) + 3/(x+3) - 2/(x+4)
Σ_[r=1~n] r/[(r+2)(r+3)(r+4)]
= Σ_[r=1~n] { -1/(r+2) + 3/(r+3) - 2/(r+4) }
= Σ_[r=1~n] [-1/(r+2) + 1/(r+3)]
+ 2 Σ_[r=1~n] [1/(r+3) - 1/(r+4)]
= [-1/(1+2) + 1/(n+3)] + 2[1/(1+3) - 1/(n+4)]
= -n/[3(n+3)] + 2n/[4(n+4)]
= n [-2(n+4)+3(n+3)]/[6(n+3)(n+4)]
= n(n+1)/[6(n+3)(n+4)]