4. 試應用均值定理(The Mean Value theorem),證明 cos(b)-cos(a)≤ b-a, a,bR . or sin b -sin(a)≤ b-a, a,bR?
回答 (1)
(cos(b)-cos(a))/(b-a) = -sin(u)
for som u between a and b
故, 對此 u
cos(b) - cos(a) = -sin(u) (b-a)
若 b > a, 則
-sin(u)(b-a) ≦ b-a
若 a > b, 則
-sin(u)(b-a) = sin(u)(a-b) ≧ -(a-b) = b-a
故
b > a 得 cos(b) - cos(a) ≦ b - a;
a > b 則 cos(b) - cos(a) ≧ b - a,
(sin(b)-sin(a))/(b-a) = cos(v)
for som v between a and b
故, 對此 v,
sin(b) - sin(a) = cos(v)(b-a)
若 b > a 則 sin(b) - sin(a) ≦ b - a;
若 a > b 則 sin(b) - sin(a) ≧ b - a.
因此,
cos(b) - cos(a) ≦ b - a 及
sin(b) - sin(a) ≦ b - a
均成立於 all a, b such that a < b,
而非 for all a, b in R.
收錄日期: 2021-05-04 02:31:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20210112111441AAad19I
檢視 Wayback Machine 備份