3. (a).試以微積分之方法求出內接於半徑為16之半圓內之長方形的最大面積 . (b)..試計算點 (1,4) 至曲線 y2=2x 之最近的距離 .?

2021-01-12 7:14 pm

回答 (1)

2021-01-13 12:57 am
(a)
設半圓用函數 y = √(r^2 - x^2), -r ≦ x ≦ r, r = 16.

此半圓內矩形最大, 此矩形四個頂點必然形如:
    (-t,0), (t,0), (-t,√(r^2-t^2)), (t,√(r^2-t^2))
其面積為 A(t) = 2t × √(r^2-t^2).

欲求 A(t) 最大, 相當於找 f(t) = (A(t))^2 最大.
    f(t) = 4t^2(r^2-t^2) = 4r^2 t^2 - 4t^4, t > 0
∴  f'(t) = 8r^2 t - 16t^3
    f'(t) = 0 iff. 2t^2 = r^2 iff. t = r/√2
此時
    f"(t) = 8r^2 - 48t^2 < 0
∴  f(r/√2) 是相對極大也是絕對最大.

r = 16, 故 optimal t = 16/√2,
    Area = A(16/√2) = 16√2 × √(16^2-16^2/2) = 256.


(b)
曲線外一點至曲線距離 = 此點王曲線上之點的最氳距離.
∴ d((1,4),C) = √[(x-1)^2+(y-4)^2], (x,y) in C: y^2 = 2x

為方便, 考慮 d^2, d^2 達最小也就是 d 達曼小.

f(y) = d^2((1,4),C) = (x-1)^2 + (y-4)^2
      = (y^2/2 - 1)^2 + (y-4)^2
     = y^4/4 - y^2 + 1 + y^2 - 8y + 16
     = y^4/4 - 8y + 17,

f'(y) = y^3 - 8
f'(y) = 0 iff. y = 2

f"(y) = 3y^2 > 0 when y = 2
∴ f(y) 在 y = 2 達相對極小, 也是絕對最小.

在 C 上, y = 2 則 x = 2, 故
    d((1,4),C) = d(1,4),(2,2))
        = √[(2-1)^2 + (2-4)^2] = √5.


收錄日期: 2021-05-04 02:32:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20210112111425AAPdHq9

檢視 Wayback Machine 備份