✔ 最佳答案
AB = AC = 50cm
設 DF = x, EF = y
則 DC = DF = x, EB = EF = y.
AE + AD + DE = AE + AD + x + y
= AE + EB + AD + DC
= AB + AC
= 2AB = 1oocm
因為 OC⊥DC, OB⊥EB, OF⊥DE,
所以 □BOFE, □CDFO 各是相對兩內角互補,
所以它們都是圓內接四邊形.
設圓O 半徑 r, 則
DF = x = r.tan(∠COF/2)
EF = y = r.tan(∠BOF/2)
AB = r.tan((∠BOF+∠COF)/2)
∴ 50 = r.tan((76°+58°)/2)
r = 50/tan(67°)
∴ DF = 50tan(29°)/tan(67°)
EF = 50tan(38°)/tan(67°)
DE = 50(tan(29°)+tan(38°))/tan(29°+38°)
= 50(1-tan(29°)tan(38°))
= 28.346(cm)