Solve (tan(2x)-tan(x))(cos(3x)+cos(x))+2cos(x)=2, 0 <= x <= pi
(sinx/(cosx cos2x))(2cos2x cosx)+2cosx=2 <---- (*)
2sinx+2cosx=2
sin^2(x)+cos^2(x)+2cosxsinx =1
2sinxcosx=0
sin2x=0
2x=0, pi, 2pi
x = 0, pi/2, pi
x=pi/2 is rejected because tan(pi/2) is undefined.
how about x=pi? if I sub x=pi into the equation, I get -2 instead of 2.
What have I don't wrong?
(*) tan2x-tanx
=(2tanx/(1-tan^2(x)))-tanx
=(tanx(1+tan^2(x)))/(1-tan^2(x))
=tanxsec^2(x)/(1-tan^2(x))
=tanx/(cos^2(x)-sin^2(x))
=sinx/cosxcos2x