x=sec(theta), find maximum value of ((x^2 - 2)^2)/x^4 , x>=1?

2020-12-31 12:47 pm
Given that sqrt(x^2 -1)/x^2 =(sin2(theta))/2, use this to find maximum value of ((x^2 - 2)^2)/x^4.
How? I cannot see the relationship....

I have sub x=sec(theta) into ((x^2 - 2)^2)/x^4 and ended up with (1-2cos^2(theta))^2, and the maximum value is 1, but how to do it per requirement?

回答 (1)

2020-12-31 5:14 pm
✔ 最佳答案
x = sec(θ)
∴ |x| ≧ 1
∴ x^2 - 1 = tan^2(θ)
   (x^2-1)/x^2 = sin^2(θ)

(x^2-2)^2/x^4 = [(x^2-1)/x^2-1/x^2]^2
   = (sin^2(θ) -1/x^2)^2
   ≦ (max{sin^2(θ),1/x^2})^2 (*)
   ≦ 1

關於 (*):
a, b 均非負, 則
    |a-b| = max{a-b,b-a} ≦ max{a,b}

    (a-b)^2 ≦ (max{a,b})^2
等號僅成立於 a, b 兩者其一為 0.

若 max{sin^2(θ),1/x^2} = sin^2(θ)
等號成立於 |sin(θ)| = 1, 即 cos(θ) = 0,
亦即 x = sec(θ) = ±∞.
但 +∞ 與 -∞ 不是實數.
故: |sin(θ)| < 1, 只能無限接近 1.

若 max{sin^2(θ),1/x^2} = 1/x^2
則 maximum 發生在 x = 1, 即 sin(θ) = 0.
故得
    (x^2-2)^2/x^4
       = (sin^2(θ) -1/x^2)^2
       = 1

∴ max_{x≧1} (x^2-2)^2/x^4 = 1, 發生於 x = 1



不藉由 x = sec(θ),
單純看 (x^2-2)^2/x^4, x≧ 1:
    (x^2-2)^2/x^4 = (1-2/x^2)^2
因 x ≧ 1, 所以 2/x^2 ≦ 2
∴ -1 ≦ 1 - 2/x^2 < 1
∴ (1-2/x^2)^2 ≦ 1
   等號發生於 1-2/x^2 = -1, 即 x = 1 時.

    max_{x≧1} (x^2-2)^2/x^4 = 1, 發生於 x = 1.


收錄日期: 2021-04-24 08:16:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20201231044734AAJFckN

檢視 Wayback Machine 備份