✔ 最佳答案
0 < B < A < 90°
故 0 < tanB < tanA < +∞.
k = tanA.tanB > 0
解方程式:
0 = x^2 - (1+k)x + k = (x-1)(x-k)
或直接套公式:
tanA = {(1+k)+√[(1+k)^2-4k]}/2
= {(1+k)+|1-k|}/2 = max{1,k}
tanB = {(1+k)-|1-k|}/2 = min{1,k}
tan(A-B) = (tanA -tanB)/(1+tanA tanB)
= (max{1,k}-min{1,k})/(1+k)
= |1-k|/(1+k)