✔ 最佳答案
a)
HA(aq) + NaOH(aq) → NaA(aq) + H₂O(ℓ)
Mole ratio HA : NaOH = 1 : 1
Moles of NaOH reacted = (0.341 mol/L) × (16.73/1000 L) = 0.005705 mol
Moles of HA required = 0.005705 mol
Concentration of HA = (0.005705 mol) / (20.00/1000 L) = 0.285 M
====
b)
Consider the dissociation of HA:
HA(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq) + A⁻(aq) Ka = 7.89 × 10⁻⁶
Initial: 0.285 M 0 M 0 M
Change: -y M +y M +y M
Eqm: (0.285 - y) M y M y M
≈ 0.285 M
At eqm:
Ka = [H₃O⁺] [A⁻] / [HA]
y² / 0.285 = 7.89 × 10⁻⁶
y = √(0.285 × 7.89 × 10⁻⁶) = 1.50 × 10⁻³
pH = -log[H₃O⁺] = -log(1.50 × 10⁻³) = 2.82
====
c)
HA(aq) + NaOH(aq) → NaA(aq) + H₂O(ℓ)
Mole ratio NaOH : NaA = 1 : 1
Moles of NaOH reacted = 0.005705 mol
Moles of NaA produced = (16.73 + 20.00) mL = 36.73 mL = 0.03673 L
Concentration of HA in the final soluton = (0.005705 mol) / (0.03673 L) = 0.155 M
[A⁻] in the final solution = 0.155 M
Consider the dissociation of A⁻:
A⁻(aq) + H₂O(ℓ) ⇌ HA(aq) + OH⁻(aq) Kb = (1.00 × 10⁻¹⁴)/(7.89 × 10⁻⁶)
Initial: 0.155 M 0 M 0 M
Change: -z M +z M +z M
Eqm: (0.155 - z) M z M z M
≈ 0.155 M
At eqm:
Ka = [H₃O⁺] [A⁻] / [HA]
y² / 0.155 = (1.00 × 10⁻¹⁴)/(7.89 × 10⁻⁶)
y = √[0.155 × (1.00 × 10⁻¹⁴)/(7.89 × 10⁻⁶)] = 1.40 × 10⁻⁵
pH = 14 + log[OH⁻] = 14 + log(1.40 × 10⁻⁵) = 9.15