證明 log7^11+log7^29/2<log7^20?

2020-11-30 3:59 pm

回答 (1)

2020-12-01 12:04 pm
 What is "log7^11+log7^29/2" ?


若 log 的底大於 1. 則

(log7^11)+(log(7^29))/2
    = log(7^11) + log((7^29)^(1/2))
    = (log7^11)+(log7^(29/2))
    = log((7^11)(7^14.5)) 
    = log(7^25.5) > log(7^20)

(log7^11)+(log((7^29)/2))
    > log(7^11) + log(7^28)
    = log(7^39)  > log(7^20)

可能造成 <log7^20 的, 恐怕只有
log(7^11+log7^29/2)?

(log(7^29))/2 =  log7^(29/2) <  log((7^29)/2)

log(7^11+log7^29/2)
    ≦ log(7^11+ log((7^29)/2))
    < log(7^11+ log(7^29))
    < log(7^11+ 29)     (假設 log 的底是 10)
    < log(7^11 + 7^2)
    < log((7^11)×2)
    < log(7^12)
    < log(7^20)


收錄日期: 2021-05-04 02:36:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20201130075935AAywZBe

檢視 Wayback Machine 備份