✔ 最佳答案
In ΔABD:
AD = x + 6
BD = 4 + [(1/2)x + 2] = (x/2) + 6
AB = (3/2)x + 6 = (3x/2) + 6
AD² + BD² = AB² (Pythagorean theorem)
[x + 6]² + [(x/2)² + 6]² = [(3x/2)² + 6]²
[x² + 12x + 36] + [(x²/4) + 6x + 36] = (9x²/4) + 18x + 36
x² = 36
x = 6 or x = -6 (rejected)
AD = (6) + 6 = 12
DC = (1/2)(6) + 2 = 5
AB = [3(6)/2] + 6 = 15
In ΔABC:
AC² = AD² + DC² (Pythagorean theorem)
AC² = 12² + 5²
AC = 13
Perimeter of ΔABC
= AB + BC + AC
= 15 + 4 + 13
= 32 (units)