prove that a + b ≤ |a| + |b|?

2020-11-01 12:53 pm
I tried splitting it up into the cases where a+b >= 0 then a+b<0. I figured out the proof for a+b >= 0 but im struggling with the case where a+b<0. I got here:
-a ≤ |a| and -b ≤ |b|
 -a + -b ≤ |a|+|b|
-(a+b) ≤ |a|+|b|
but i don think this is correct. any ideas on where to start?

回答 (4)

2020-11-01 8:35 pm
✔ 最佳答案
|a| ≥ O and |b| ≥ 0

Case I: a ≥ 0  and  b ≥ 0
When a ≥ 0:  |a| = a …… [1]
When b ≥ 0:  |a| = b …… [2]
[1] + [2]:  |a| + |b| = a + b

Case II: a ≥ 0  and  b < 0
When a ≥ 0:  |a| = a …… [3]
When b < 0:  |b| > b …… [4]
[3] + [4]:  |a| + |b| > a + b

Case III:
a < 0  and  b ≥ 0
When a < 0:  |a| > a …… [5]
When b ≥ 0:  |a| = b …… [6]
[5] + [6]:  |a| + |b| > a + b

Case IV:
a < 0  and  b < 0
When a < 0:  |a| > a …… [7]
When b < 0:  |a| > b …… [8]
[7] + [8]:  |a| + |b| > a + b

Combine the above cases.  Conclusion: |a| + |b| ≥ a + b
2020-11-01 1:26 pm
You can easily prove these two statements, right?
a ≤ |a|
b ≤ |b|

For example:
-3 < |-3|
0 = |0|
5 = |5|

So from there it's a simple step to get to:
a + b ≤ |a| + |b|
2020-11-01 3:18 pm
You have done the resultant  R of two vectors
R^2= a2 +b^2 +2ab cos theta=||a||^2+||b||^2+ 2 ||a|| ||b|| cos theta
a+b = |a| +|b| only when cos theta=0 or theta=pi/2.. Otherwise a+b > |a|+|b|
2020-11-01 2:45 pm
Absolute values are never negative. Thus the sum of |a| and |b| is > than a + b if one or both are negative.  Equality holds if both are non negative. 


收錄日期: 2021-04-23 23:06:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20201101045330AAniLW3

檢視 Wayback Machine 備份