令 u = y - x, 所以
y = u + x
y' = u' + 1
xy' = (y-x)^3 + y
<==> x(u'+1) = u^3 + u+x
<==> xu' = u^3 + u
(For x ≠ 0, u≠0)
<==> u'/(u^3+u) = 1/x
<==> u'[1/u - u/(u^2+1)] = 1/x
<==> ln|u| - (1/2) ln(u^2+1) = ln|x| + C
<==> |u|/√(u^2+1) = C' |x|, C' > 0
由原方程式, x = 0 則 y = 0, u = 0;
由前列通解, 亦通過 (0,0).
又: u = 0 即 y = x 亦滿足原方程式, 也滿足前列
通解 C' = 0 情形.
所以全解為:
|y-x|/√[(y-x)^2+1] = C|x|, C ≧ 0
注意:
或許有人會將通解寫成
|y-x|/√[(y-x)^2+1] = C x, C 任意常數;
或
(y-x)/√[(y-x)^2+1] = C x, C 任意常數.
但此式與前解不同. 因通解只是一堆解的通式,
實際解則是代入一個特定常數 C. 而代入任一
特定常數 C, 可很容易看出以上兩式皆不同於
前列通解.
為確認通解正碓性, 對
|y-x|/√[(y-x)^2+1] = C|x|
做隱函數微分.
首先, |x| 在 x = 0 雖不可微分, 但 |y-x| 當 y = x
時的微分為 0, 而 (0,0) 亦在其中. 故可將 |x| 與
|y-x| 之導數寫成
(|x|)' = s(x); (|y-x|)' = s(y-x)(y'-1)
s(x) 表原 x 的正負號函數, 即 s(x) = 1, 0, 或 -1
視 x > 0, = 0, 或 < 0 而定.
所以 |y-x|/√[(y-x)^2+1] = C|x| 微分得:
s(y-x)(y'-1)/√[(y-x)^2+1]
- |y-x|(y-x)(y'-1)/[(y-x)^2+1]^(-3/2)
= C s(x)
∴ (y'-1){s(y-x)[(y-x)^2+1] - |y-x|(y-x)}
= C s(x) [(y-x)^2+1]^(3/2)
∴ (y'-1) s(y-x) = C s(x) [(y-x)^2+1]^(3/2)
∴ x (y'-1) s(y-x) = C |x| [(y-x)^2+1]^(3/2)
= (|y-x|/√[(y-x)^2+1]) [(y-x)^2+1]^(3/2)
= |y-x| [(y-x)^2+1]
∴ x(y'-1) = (y-x)[(y-x)^2+1] = (y-x)^3 + y-x
∴ xy' = (y-x)^3 + y.