Help on this question?

2020-10-06 4:55 pm
3. The quadratic equation 𝑥^2+(𝑚+3)𝑥+4𝑚=0 , where 𝑚 is a constant, has equal roots. Find the possible values for 𝑚.

回答 (2)

2020-10-06 5:09 pm
✔ 最佳答案
The quadratic equation x² + (m + 3)x + 4m = 0 has equal roots.
Hence, discriminant, Δ = 0
(m + 3)² - 4(1)(4m) = 0
m² + 6m + 9 - 16m = 0
m² - 10m + 9 = 0
(m - 1)(m - 9) = 0
m = 1  or  m = 9
2020-10-06 5:12 pm
𝑥^2 +(𝑚+3)𝑥 + 4𝑚 = 0

  4m must be a square
  factors as  (x - 2sqrtm)^2 = 0
   root is  +/-2sqrtm

expand  (x - 2sqrtm)^2  
  =  x^2  -  4 sqrtm  +  4m
  -4 sqrtm  =   m+3
m + 4 sqrtm  + 3 = 0

use the quad. formula
   sqrt m  =  [-4+/- sqrt(16 - 12)] / 2
   sqrt m =[-4 +/- 2]/2
   sqrt m =  -1  or  -3
    m  =  1  or  9

  


收錄日期: 2021-04-24 08:01:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20201006085530AAZUPjF

檢視 Wayback Machine 備份