Write a linear equation in slope-intercept form with a slope of -5 and passes through the point (- 1, - 8) .?

2020-09-26 11:02 pm

回答 (3)

2020-09-26 11:12 pm
Point-slope form of the linear equation:
y - (-8) = -5 [x - (-1)]
y + 8 = -5(x + 1)
y + 8 = -5x - 5
Hence, 5x + y + 13 = 0
2020-09-27 12:32 am
Slope (m) = - 5  and passes through ( - 1, - 8 )

THE SLOPE-INTERCEPT form is   y  =  m x + b

where x and y coordinates are given (- 1, - 8),  m =  slope = (- 5)  and   b is known as 

" y " intercept ( or simply intercept )

In this case the equation takes the form  y  =  - 5 x  + b  .............. Required Eqn (1)

Since this line passes through ( -1, -8 ), it must satisfy the above equation.

 ..  .... y  .   ..     m  ....   x   +   Intercept
 ....     |      ...      |           |            |
=>  ( - 8 )  =  ( - 5 ) * ( - 1 ) +      b

=>   b  =  -  13

Substitute b = - 13 in  eqn (1)

==========================================
The required Equation is --

y  =  - 5 x - 13         ............................. Answer

==========================================
2020-09-26 11:15 pm
The slope-intercept form of a line is y = mx + b

We are given the slope m, which is -5:

y = -5x + b

It must pass through the point (-1, -8), so we know that when x = -1, y must equal -8:

-8 = -5(-1) + b

We can now solve for b, then write the equation in slope-intercept form.


收錄日期: 2021-04-24 08:02:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200926150217AAc9zyQ

檢視 Wayback Machine 備份