Express 4.0333333 as a quotient of two integers.?
回答 (5)
4.0333333....=
4+0.0333333.....
Let x=0.0333333.....
=>
10x=0.333333.....
=>
90x=3
=>
x=1/30
Thus, 4.0333333...=4 1/30=121/30.
n = 4.0333333……
10n = 40.3333333……
10n - n = 40.3333333…… - 4.0333333……
9n = 36.3
n = 36.3/9
4.0333333…… = 121/30
Let n = 4.0333333...
so, 10n = 40.33333...
and 100n = 403.3333..
Then, 90n = 363
Hence, n = 363/90 => 121/30
:)>
x = 4.03333...
10x = ?
100x = ?
100x - 10x = ?
Subtracting gives ?
Can you take it from there?
We wish to express each infinitely repeating decimal as a quotient of integer p/q
__ __
let x= 4.0333333, therefore 100x= 403.333333
We can write as
__ __
100x - x = 403.333333 - 4.0333333
99x = 399
x = 399/99
收錄日期: 2021-04-24 08:02:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200910130027AAWHpyG
檢視 Wayback Machine 備份