Express 4.0333333 as a quotient of two integers.?

2020-09-10 9:00 pm
The 3 is a repeat

回答 (5)

2020-09-10 10:43 pm
4.0333333....=
4+0.0333333.....
Let x=0.0333333.....
=>
10x=0.333333.....
=>
90x=3
=>
x=1/30
Thus, 4.0333333...=4 1/30=121/30.
2020-09-10 9:51 pm
n = 4.0333333……
10n = 40.3333333……

10n - n = 40.3333333…… - 4.0333333……
9n = 36.3
n = 36.3/9
4.0333333…… = 121/30
2020-09-10 10:30 pm
Let n = 4.0333333...

so, 10n = 40.33333...

and 100n = 403.3333..

Then, 90n = 363

Hence, n = 363/90 => 121/30

:)>
2020-09-10 9:19 pm
x = 4.03333...

10x = ?
100x = ?

100x - 10x = ?

Subtracting gives ?

Can you take it from there?
2020-09-10 9:18 pm
We wish to express each infinitely repeating decimal as a quotient of integer p/q

                       __                                           __           
let x= 4.0333333, therefore 100x= 403.333333

We can write as 
                                 __                __
100x - x = 403.333333 - 4.0333333

           99x = 399

               x  = 399/99


收錄日期: 2021-04-24 08:02:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200910130027AAWHpyG

檢視 Wayback Machine 備份