How do you find the derivative of 1/x using limit definitions?
回答 (3)
The answer is as follows:
f(x) = 1/x
f(x + h) = 1/(x + h)
(f(x + h) - f(x)) / (x + h - x) =>
(1/(x + h) - 1/x) / h =>
((x - (x + h)) /(x * (x + h))) / h =>
(x - x - h) / (h * x * (x + h)) =>
-h / (h * x * (x + h)) =>
-1 / (x * (x + h))
h goes to 0.
-1 / (x * (x + 0)) =>
-1 / (x * x) =>
-1/x^2
The same way you find every derivative of a function.
Definition: f’(x) = lim h → 0 { [ f(x+h) - f(x) ] / h }
f’(x) = lim h→0 { [ f(x+h) - f(x) ] / h }
f( x ) = 1/x
f( x+h ) = 1/( x+h )
f’(x) = lim h→0 { [ 1/(x+h) - ( 1/x ) ] / h }
f’(x) = lim h→0 { [ ( x - x - h ) / ( x² + xh ) ] / h }
f’(x) = lim h→0 { [ ( -h ) / ( x² + xh ) ] / h }
f’(x) = lim h→0 { -1 / ( x² + xh ) }
f’(x) = -1 / ( x² + x * 0 )
f’(x) = -1 / x²
━━━━━━
收錄日期: 2021-04-30 17:17:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200905041322AA0XQwY
檢視 Wayback Machine 備份