✔ 最佳答案
Let (n - d), n and (n + d) be the three real roots of the equation.
Plug separately (n - d), n and (n + d) into the equation x³ + ax² + bx + c = 0:
(n - d)³ + a(n - d)² + b(n - d) + c = 0 …… {1}
n³ + an² + bn + c = 0 …… {2}
(n + d)³ + a(n + d)² + b(n + d) + c = 0 …… {3}
{2} - {1}:
[n³ - (n - d)³] + a[n² - (n - d)²] + b[n - (n - d)] = 0
(n³ - n³ + 3n²d - 3nd² + d³) + a(n² - n² + 2nd - d²) + b(n - n + d) = 0
(3n²d - 3nd² + d³) + a(2nd - d²) + bd = 0 …… {4}
{3} - {2}:
[(n + d)³ - n³] + a[(n + d)² - n²] + b[(n + d) - n] = 0
(n³ + 3n²d + 3nd² + d³ - n³) + a(n² + 2nd + d² - n²) + b(n + d - n) = 0
(3n²d + 3nd² + d³) + a(2nd + d²) + bd = 0 …… {5}
{5} - {4}:
[(3n²d + 3nd² + d³) - (3n²d - 3nd² + d³)] + a[(2nd + d²) - (2nd - d²)] + (bd - bd) = 0
6nd² + 2d²a = 0
a = -3n
Plug a = -3n into {5}:
(3n²d + 3nd² + d³) + (-3n)(2nd + d²) + bd = 0
3n²d + 3nd² + d³ - 6n²d - 3nd² + bd = 0
bd = 3n²d - d³
b = 3n² - d²
Plug a = -3n and b = 3n² - d into {2}:
n³ + (-3n)n² + (3n² - d²)n + c = 0
n³ - 3n³ + 3n³ - d²n + c = 0
c = -n³ + d²n
Prove that: 2a³ + 27c = 9ab
L.H.S.
= 2a³ + 27c
= 2(-3n)³ + 27(-n³ + d²n)
= -54n³ - 27n³ + 27d²n
= -81n³ + 27d²n
= -27n(3n² - d²)
= 9(-3n)(3n² - d²)
= 9ab
= R.H.S.
Hence, 2a³ + 27c = 9ab