Can anyone solve the differential equation of x(1+y^2)^1/2dx=y(1+x^2)^1/2dy?
回答 (4)
The answer is as follows:
Looks separable to me
x * dx / (1 + x^2)^(1/2) = y * dy / (1 + y^2)^(1/2)
u = (1 + x^2)^(1/2)
u^2 = 1 + x^2
2u * du = 2x * dx
u * du = x * dx
u * du / u =>
du
v = (1 + y^2)^(1/2)
v^2 = 1 + y^2
2v * dv = 2y * dy
v * dv = y * dy
y * dy / (1 + y^2)^(1/2)
v * dv / v =>
dv
Now we have:
du = dv
Integrate
u + C = v
(1 + x^2)^(1/2) + C = (1 + y^2)^(1/2)
You can expand from there if you want.
Hint: From highschool algebra, do you see that this is separable?
Separate it first. What do you get? Answer that & we will proceed.
Hopefully no one will spoil you the answer thereby depriving you from your personal enhancement; that would be very inconsiderate of them. Too late!
x√( 1 + y² ) dx = y√( 1 + x² ) dy
x / √( 1 + x² ) dx = y / √( 1 + y² ) dy
∫x / √( 1 + x² ) dx = ∫ y / √( 1 + y² ) dy
LHS:
let u = ( 1 + x² ) such that
du/dx = 2x
dx = du/(2x)
∴
∫ x / √( 1 + x² ) dx
= ∫ ( x /√u ) * du/(2x)
= ½ ∫ u^(-½) du
= √u
= √( 1 + x² ) + constant
RHS:
∴
∫ y / √( 1 + y² ) dy
= √( 1 + y² ) + constant
THUS:
√( 1 + y² ) = √( 1 + x² ) + C
1 + y² = [ √( 1 + x² ) + C ]²
y² = [ √( 1 + x² ) + C ]² - 1
y² = C² + x² + 2C√( x² + 1 )
y = ±√[ C² + x² + 2C√( x² + 1 ) ]
收錄日期: 2021-04-24 07:58:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200813064224AA6OPDH
檢視 Wayback Machine 備份