✔ 最佳答案
設 x^3+3x^2+px-q = 0 之3根為 b-d, b, b+d.
由根與係數關係, 知
3b = -3,
3b^2-d^2 = p
b(b^2-d^2) = q
故
b = -1, p = 3-d^2, q = d^2-1.
∴ p + q = 2.
設 x^3+(2-p)x^2-(3+q)x-8=0 之3根為 a, ar, ar^2.
則
a(1+r+r^2) = p-2
a^2r(1+r+r^2) = -(3+q)
a^3r^3 = 8
由最後一式得 ar = 2;
由前兩式相除, ar = -(3+q)/(p-2) = (3+q)/(2-p).
∴ 3+q = 2(2-p).
即 2p + q = 1.
與之前所得關係式 p + q = 2 聯立, 得
p = -1, q = 3.