若x^3+3x^2+px-q=0的三根成等差,x^3+(2-p)x^2-(3+q)x-8=0的三根成等比, 求數對(p ,q ) ?

2020-08-09 9:20 am

回答 (1)

2020-08-09 7:49 pm
✔ 最佳答案
設 x^3+3x^2+px-q = 0 之3根為 b-d, b, b+d.
由根與係數關係, 知
3b = -3,
3b^2-d^2 = p
b(b^2-d^2) = q

b = -1, p = 3-d^2, q = d^2-1.
∴ p + q = 2.

設 x^3+(2-p)x^2-(3+q)x-8=0 之3根為 a, ar, ar^2.

   a(1+r+r^2) = p-2
   a^2r(1+r+r^2) = -(3+q)
   a^3r^3 = 8
由最後一式得 ar = 2;
由前兩式相除, ar = -(3+q)/(p-2) = (3+q)/(2-p).
∴ 3+q = 2(2-p).
即 2p + q = 1.
與之前所得關係式 p + q = 2 聯立, 得
p = -1, q = 3.


收錄日期: 2021-05-04 02:33:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200809012053AAiORM2

檢視 Wayback Machine 備份