Math question ?

2020-08-07 12:30 pm
the sum of 10 consecutive integers starting with 11 equals the sum of 5 consecutive integers starting with

A)22
B)29
C)31
D)33

回答 (2)

2020-08-07 12:39 pm
Let a be the integer that the 5 consecutive starting with.

Sum of n integers starting with a = [2a + (n - 1)] n / 2

[2a + (5 - 1)] × 5 / 2 = [2×11 + (10 - 1)] × 10 / 2
2a + 4 = (22 + 9) × 2
2a + 4 = 62
2a = 58
a = 29

The answer: B) 29
2020-08-07 12:35 pm
S = 11 + 12 + 13 + ... + 20

t[1] = 11
t[10] = 20

S = (10/2) * (11 + 20)
S = 5 * 31
S = 155

T = n + n + 1 + n + 2 + n + 3 + n + 4

T = (5/2) * (n + n + 4)
T = (5/2) * (2n + 4)
T = 5 * (n + 2)
T = 5n + 10

5n + 10 = 155
n + 2 = 31
n = 29


收錄日期: 2021-04-18 18:35:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200807043042AAk34Yg

檢視 Wayback Machine 備份