How can I solve this?
A force of 151 pounds makes an angle of 74°29' with a second force. The resultant of the two forces makes an angle of 43°9' to the first force. Find the magnitudes of the second force and of the resultant. Thanks in advance!!!
回答 (3)
The two forces form a parallelogram and the resultant force is a diagonal.
Hence, AD//BC and AB//DC
∠DAC = 74°29' - 43°9' = 31°20'
∠ACB = ∠DAC = 31°20' (alt. ∠s, AD//BC)
∠ABC = 180° - ∠DAB = 180° - 74°29' = 105°31' (int. ∠s, AD//BC)
In ΔABC:
AB / sin∠ACB = BC / sin∠CAB (sine law)
151 / sin31°21' = BC / sin43°9'
BC = 151 × sin43°9' / sin 31°21'
BC = 198
Magnitude of the second force = 198 lb
AB / sin∠ACB = AC / sin∠ABC (sine law)
151 / sin31°21' = AC/ sin105°31'
AC = 151 × sin105°31' / sin 31°21'
AC = 280
Magnitude of the resultant force = 280 lb
∠CAD = 74°29' - 43°09' = 31°20'
(151 lb)sin(-43°) + ADsin(31°20') = 0
Solve for AD, that is, the magnitude of force AD.
AC = ADcos(31°20') + (151 lb)cos(-43°)
<151 * cos(74d 29m) , 151 * sin(74d 29m)>
<F * cos(0) , F * sin(0)> =>> <F , 0>
<T * cos(43d 9m) , T * sin(43d 9m)>
T * sin(43d 9m) / (T * cos(43d 9m)) = (151 * sin(74d 29m) + 0) / (151 * cos(74d 29m) + F)
tan(43d 9m) = 151 * sin(74d 29m) / (F + 151 * cos(74d 29m))
(F + 151 * cos(74d 29m)) * tan(43d 9m) = 151 * sin(74d 29m)
F * tan(43d 9m) + 151 * cos(74d 29m) * tan(43d 9m) = 151 * sin(74d 29m)
F * tan(43d 9m) = (151 * sin(74d 29m) - 151 * cos(74d 29m) * tan(43d 9m))
F * tan(43d 9m) = 151 * (sin(74d 29m) - cos(74d 29m) * tan(43d 9m))
F * sin(43d 9m)/cos(43d 9m) = 151 * (1/cos(43d 9m)) * (sin(74d 29m) * cos(43d 9m) - cos(74d 29m) * sin(43d 9m))
F * sin(43d 9m) = 151 * (sin(74d 29m) * cos(43d 9m) - cos(74d 29m) * sin(43d 9m))
F * sin(43d 9m) = 151 * sin(74d 29m - 43d 9m)
F * sin(43d 9m) = 151 * sin(31d 20m)
F = 151 * sin(31d 20m) / sin(43d 9m)
So there's the 1st force.
151 * sin(74d 29m) + 0 = T * sin(43d 9m)
151 * sin(74d 29m) / sin(43d 9m) = T
151 * sin(31d 20m) / sin(43d 9m) =>
151 * sin((31 * 60 + 20) / 60 degrees) / sin((43 * 60 + 9) / 60 degrees) =>
151 * sin(1880/60) / sin(2589/60) =>
151 * sin(94/3) / sin(863/20) =>
151 * sin(94/3) / sin(43.15)
F = 151 * sin(94/3) / sin(43.15)
F = 114.8138715949481437397349649825....
151 * sin(74d 29m) / sin(43d 9m) =>
151 * sin((74 * 60 + 29) / 60) / sin(43.15) =>
151 * sin(4469/60) / sin(43.15) =>
212.741888702184375110965743358...
T = 212.741888...
To the nearest pounds
115 and 213
收錄日期: 2021-04-24 07:54:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200806180154AA1svFS
檢視 Wayback Machine 備份