Barry weights 20 oranges and 25 lemons.?
how to get 20 for 2.ii)
the ans of i) is 163.33
回答 (2)
i)
Mean weight of the 45 fruits
= (Total weight) / 45
= (220 × 20 + 118 × 25) / 45 g
= 163.33 g
ii)
Variance, σ² = Σ(xᵢ - μ)²/n
σ² = Σ(xᵢ² - 2μxᵢ + μ²)/n
σ² = (Σxᵢ² - 2μΣxᵢ + nμ²)/n
σ² = (Σxᵢ²/n) - 2μ(Σxᵢ/n) + μ²
σ² = (Σxᵢ²/n) - μ²
For oranges:
32² = (Σxₒ²/20) - 220²
Σxₒ² = 988480 g²
For lemons:
12² = (Σxₗ²/25) - 118²
Σxₗ² = 351700
Variance of the weights of the 45 fruits, σ²
= (Σxᵢ²/n) - μ²
= [(Σxₒ² +Σxₗ²)/n] - μ²
= [(988480 + 351700)/45] - 163.33²
= 3105
220 = (O[1] + O[2] + ... + O[20]) / 20
4400 = O[1] + O[2] + ... + O[20] = o
118 = (L[1] + L[2] + ... + L[25]) / 25
118 * 25 = L[1] + L[2] + ... + L[25]
2950 = L[1] + L[2] + ... + L[25] = l
(O[1] + O[2] + ... + O[20] + L[1] + L[2] + ... + L[25]) / (25 + 20) =>
(4400 + 2950) / 45 =>
7350 / 45 =>
7 * 105 * 10 / (5 * 9) =>
7 * 21 * 10 / 9 =>
7 * 7 * 10 / 3 =>
490 / 3 =>
163.333333.....
Now let's look at those standard deviations
sqrt(((220 - O[1])^2 + (220 - O[2])^2 + ... + (220 - O[20])^2) / 20) = 32
((220 - O[1])^2 + (220 - O[2])^2 + ... + (220 - O[20])^2) / 20 = 1024
220^2 - 440 * O[1] + O[1]^2 + 220^2 - 440 * O[2] + O[2]^2 + ... + 220^2 - 440 * O[20] + O[2]^2 = 1024
220^2 * 20 - 440 * (O[1] + O[2] + ... + O[20]) + O[1]^2 + ... + O[20]^2 = 1024
20 * 48400 - 440 * o + O[1]^2 + O[2]^2 + ... + O[20]^2 = 1024
968000 - 440 * 4400 + O[1]^2 + O[2]^2 + ... + O[20]^2 = 1024
O[1]^2 + O[2]^2 + ... + O[20]^2 = 1024 + 968000
O[1]^2 + O[2]^2 + ... + O[20]^2 = 969024
sqrt(((118 - L[1])^2 + (118 - L[2])^2 + ... + (118 - L[25])^2) / 25) = 12
((118 - L[1])^2 + (118 - L[2])^2 + ... + (118 - L[25])^2) / 25 = 144
(118 - L[1])^2 + (118 - L[2])^2 + ... + (118 - L[25])^2 = 3600
118^2 - 236 * L[1] + L[1]^2 + ... + 118^2 - 236 * L[25] + L[25]^2 = 3600
25 * 118^2 - 236 * (L[1] + L[2] + ... + L[25]) + (L[1]^2 + L[2]^2 + ... + L[25]^2) = 3600
25 * 118^2 - 236 * 2950 + L[1]^2 + L[2]^2 + ... + L[25]^2 = 3600
L[1]^2 + L[2]^2 + .. + L[25]^2 = 351700
(m - O[1])^2 + (m - O[2])^2 + ... + (m - O[20])^2 + (m - L[1])^2 + (m - L[2])^2 + ... + (m - L[25])^2 =>
m^2 - 2m * O[1] + O[1]^2 + m^2 - 2 * m * O[2] + O[2]^2 + ... + m^2 - 2m * O[20] + O[20]^2 + m^2 - 2m * L[1] + L[1]^2 + m^2 - 2m * L[2] + L[2]^2 + ... + m^2 - 2m * L[25] + L[25]^2 =>
45 * m^2 - 2m * (O[1] + O[2] + ... + O[20] + L[1] + L[2] + ... + L[25]) + O[1]^2 + O[2]^2 + ... + O[20]^2 + L[1]^2 + L[2]^2 + ... + L[25]^2 =>
45 * (490/3)^2 - 2 * (490/3) * (4400 + 2950) + 969024 + 351700 =>
45 * (1/9) * 490^2 - (980/3) * 7350 + 969024 + 351700 =>
5 * 490^2 - 980 * 2450 + 1320724 =>
120224
Divide that by 45
120224 / 45 =>
2,671.6444444444444444444444444444
Take the square root
51.687952604494255054167555825693
To the nearest integer
52
52 grams is the standard deviation.
I don't know how to get 20 for this part because that just doesn't make any sense. The mean is 163.333... grams and the average weights for each group is 118 and 220, with rather small standard deviations for each. It'd make sense that the standard deviation would be 52, since that's the interval where we'd expect to find 68% of the data set.
收錄日期: 2021-04-18 18:36:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200806045212AADpjLF
檢視 Wayback Machine 備份