Maths question?
The interval AB is extended to the point P so that AB x AP = BP^2
o------------------o-------------o
A B P
If AB = 8cm find the lengths of AP and BP
回答 (4)
Let y cm be the length of BP.
Then, the length of AP = (y + 8) cm
AB × AP = BP²
8 (y + 8) = y²
y² - 8y - 64 = 0
y = [8 ± √(8² + 4×64)]/2
y = 4 + 4√5 or y = 4 - 4√5 (rejected)
y + 8 = 12 + 4√5
The length of AP = 12 + 4√5 cm ≈ 20.94 cm
The length of BP = 4 + 4√5 cm = 12.94 cm
The interval AB is extended to the point P so that AB x AP = BP^2
o------------------o-------------o
A B P
If AB = 8 cm
8*(8 + x) = x^2
x^2 - 8x - 64 = 0
(x - 4)^2 - 80 = 0
x = 4 (1 + sqrt(5))
The length of AP = 4 (2 + sqrt(5))
and the length of BP = 4 (1 + sqrt(5)).
let AB=a;BP=b
a*(a+b)=b^2
a^2+ab-b^2 =0
a^2+ab-b^2+2b^2-2b^2+ab-ab=0
a^2+2ab+b^2-2b^2-ab=0
(a+b)^2-(b^2+ab)
64=(b^2+ab)
a*(a+b)=b^2 given
a^2=b=64
a=8;b=64
AB = 8
BP = x
AP = AB + BP = 8 + x
AB * AP = BP^2
8 * (8 + x) = x^2
64 + 8x = x^2
64 = x^2 - 8x
64 = x^2 - 2 * 4x
64 = x^2 - 2 * 4x + 4^2 - 4^2
64 + 4^2 = x^2 - 2 * 4x + 4^2
64 + 16 = (x - 4)^2
80 = (x - 4)^2
16 * 5 = (x - 4)^2
+/- 4 * sqrt(5) = x - 4
x = 4 +/- 4 * sqrt(5)
x > 0
x = 4 + 4 * sqrt(5)
x = 4 * (1 + sqrt(5))
BP = 4 * (1 + sqrt(5)) cm
4 * (1 + sqrt(5)) =>
4 * (1 + 2.236) =>
4 * 3.236 =>
4 * 3.2 + 4 * 0.036 =>
12.8 + 0.144 =>
12.944
BP is roughly 12.944 cm in length
收錄日期: 2021-04-18 18:35:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200804002747AApfAGx
檢視 Wayback Machine 備份