Compare the derivatives for y=sin^2(x) And y=sin(x^2)?

2020-07-14 4:02 pm

回答 (4)

2020-07-14 4:50 pm
✔ 最佳答案
When y = sin²(x):
dy/dx = [d sin²(x)]/dx
= {[d sin²(x)]/d sin(x)} * [d sin(x) / dx]
= 2 sin(x) * cos(x)
= 2 sin(x) cos(x)
= sin(2x)

When y = sin(x²):
dy/dx = [d sin(x²)] / dx
= {[d sin(x²)] / d(x²)} * [d (x²)/dx]
= cos(x²) * 2 x
= 2 x cos(x²)
2020-07-14 7:21 pm
y = sin^2x
dy/dx = 2sinx cosx
y = sin(x^2)
dy/dx = 2xsin(x^2)
2020-07-14 5:09 pm
y1 = sin^2(x), y1' = 2sinx*cosx  = sin(2x).
y2 = sin(x^2), y2' = cos(x^2)*2x = 2xcos(x^2).
2020-07-14 4:18 pm
y'= sin(2x) and y'= 2xcos(x²)


收錄日期: 2021-04-18 18:33:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200714080258AAyR2oY

檢視 Wayback Machine 備份