Evaluate: lim h --> 0 (cos(x+h) - cos x / h) Describe the result of this limit.?

2020-07-14 3:59 pm

回答 (2)

2020-07-14 5:06 pm
✔ 最佳答案
The answer is as follows:

https://live.staticflickr.com/65535/50111095996_7f22ecbfa1_o.png
2020-07-14 5:55 pm
I think "lim h --> 0 (cos(x+h) - cos x / h)" means
lim h→0 (cos(x+h) - cos(x))/h.

We know
cos(A+B) - cos(A-B)
= (cosAcosB - sinAsinB) - (cosAcosB + sinAsinB)
= -2sinAsinB

So if A+B=P and A-B=Q then A=(P+Q)/2 and B=(P-Q)/2, and
cosP - cosQ = -2sin[(P+Q)/2]*sin[(P-Q)/2].

Therefore
lim h→0 (cos(x+h) - cos(x))/h
= lim h→0 -2sin[(2x+h)/2]*sin[h/2]/h
= lim h→0 -sin[x+h/2]*sin[h/2]/(h/2)
= -sin(x)


收錄日期: 2021-04-18 18:35:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200714075906AAxyDRo

檢視 Wayback Machine 備份