✔ 最佳答案
Let's see what we can do with this:
x = (√7 - √5) / (√7 + √5) and y = (√7 + √5) / (√7 - √5)
Before moving on, let's simplify this by rationalizing the denominators:
x = (√7 - √5)² / [(√7 + √5)(√7 - √5)] and y = (√7 + √5)² / [(√7 + √5)(√7 - √5)]
x = (√7 - √5)² / (7 - √35 + √35 - 5) and y = (√7 + √5)² / (7 - √35 + √35 - 5)
x = (√7 - √5)² / (7 - 5) and y = (√7 + √5)² / (7 - 5)
x = (√7 - √5)² / 2 and y = (√7 + √5)² / 2
x = (7 - 2√35 + 5) / 2 and y = (7 + 2√35 + 5) / 2
x = (12 - 2√35) / 2 and y = (12 + 2√35) / 2
x = 6 - √35 and y = 6 + √35
Knowing this, you want the value of:
x³ + y³
Let's factor that, first:
(x + y)(x² - xy + y²)
Now if we substitute values, we get:
(6 - √35 + 6 + √35)[(6 - √35)² - (6 - √35)(6 + √35) + (6 + √35)²]
Now simplify what's left:
12[(36 - 12√35 + 35) - (36 + 6√35 - 6√35 - 35) + (36 + 12√35 + 35)]
12[(71 - 12√35) - (36 - 35) + (71 + 12√35)]
12(71 - 12√35 - 1 + 71 + 12√35)
12(71 - 1 + 71)
12(141)
1692