(x/2 - 4/x)^6 =>
((x^2 - 8) / (2x))^6 =>
(x^2 - 8)^6 / (64 * x^6)
1 * (x^2 - 8)^6 / (64 * x^6)
and
x^2 * (x^2 - 8)^6 / (64 * x^6) =>
(x^2 - 8)^6 / (64 * x^4)
We need to know when we have x^6 and when we have x^8
(a - b)^n = nC0 * a^n * (b)^0 + nC1 * a^(n - 1) * (b)^1 + .... + nCn * a^(n - n) * (b)^n
(x^2 - 8)^6
a = x^2
b = -8
n = 6
6Ck * (x^2)^(6 - k) * (-8)^k =>
(6! / (k! * (6 - k)!)) * x^(12 - 2k) * (-8)^k
x^(12 - 2k) = x^8 , x^6
12 - 2k = 8 , 6
4 , 6 = 2k
2 , 3 = k
6C3 * (x^2)^(6 - 3) * (-8)^3 =>
(6! / (3! * 3!)) * x^(6) * (-512) =>
20 * (-512) * x^6
6C2 * (x^2)^(6 - 2) * (-8)^2 =>
(6! / (4! * 2!)) * x^8 * 64 =>
15 * 64 * x^8
Now we have:
1 * x^8 * 15 * 64 / (64 * x^6) + x^6 * 20 * (-512) / (64 * x^4) =>
15 * x^2 - 20 * 8 * x^2 =>
15 * x^2 - 160 * x^2 =>
-145 * x^2
https://www.wolframalpha.com/input/?i=%281+%2B+x%5E2%29+*+%28%28x%2F2%29+-+%284%2Fx%29%29%5E6
The coefficient is -145