ArcSinx - ArcCosx =???
Option 1: pi/2 Option 2: -1
Option 3: pi/6?
回答 (3)
Let cos(θ) = x
Then arccos(x) = θ …… [1]
Trigonometric identity: cos(θ) = sin[(π/2) - θ]
Hence, sin[(π/2) - θ] = x
Then, arcsin(x) = (π/2) - θ …… [2]
[1] - [2]:
arcsin(x) - arccos(x)
= [(π/2) - θ] - θ
= (π/2) - 2θ
= (π/2) - 2arccos(x)
Hence, none of the three options is the answer.
The value of arcsin(x) - arccos(x) depends on the value of x.
sin^(-1)(x) - cos^(-1)(x) = 1/sqrt2
收錄日期: 2021-04-18 18:34:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200429025943AAtqTAM
檢視 Wayback Machine 備份