「※」表示一種運算符號,它的定義是a※b=ab/(a+b),求 1/【1/(1※2)-1/(2※3)+1/(3※4)-1/(4※5)+……-1/(100※101)】之值?

2020-04-26 10:54 am

回答 (1)

2020-05-10 10:53 pm
✔ 最佳答案
a※b=ab/(a+b) 
=> 1/(a※b) = (a+b)/ab = (1/b)+(1/a) = (1/a)+(1/b)1/(1※2) - 1/(2※3) + 1/(3※4) - 1/(4※5) +…-1/(100※101)= (1/1)+(1/2) -(1/2)-(1/3) + (1/3)+(1/4) -(1/4)-(1/5) + ...
 -(1/100)-(1/101)
= (1/1) -(1/101)
= 1 -(1/101)
= 100/101

∴ 1/ 【1/(1※2) - 1/(2※3) + 1/(3※4) - 1/(4※5) +…-1/(100※101)】
= 1/ (100/101)
= 101/100


收錄日期: 2021-04-25 12:56:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200426025438AAqZqE9

檢視 Wayback Machine 備份