設f(x)=(2x^3-4x^2)^6,求f'(1)?

2020-04-16 6:21 pm
答案為384,求詳解,感激不盡

回答 (2)

2020-04-16 6:57 pm
✔ 最佳答案
只是基本練習題: 連鎖律的練習.

設 u(x) = 2x^3-4x^2, 
則 f(x) = [u(x)]^6
∴ f'(x) = 6[u(x)]^5u'(x)
           = 6(2x^3-4x^2)^5(6x^2-8x)
    f'(1) = 6(2-4)^5(6-8) = 6(-2)^5(-2) = 384
2020-04-16 7:55 pm
f '(x)=6[(2x^3-4x^2)^5](6x^2-8x)
代入1後就能得到答案囉~


收錄日期: 2021-05-04 02:33:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200416102133AAirM2a

檢視 Wayback Machine 備份