✔ 最佳答案
24.
[(x + y)(x - y)/10] + [(x + y)²/2] = 1 …… [1]
x + 2y = 1 …… [2]
[1] * 10:
{[(x + y)(x - y)/10] + [(x + y)²/2]} * 10 = 1 * 10
(x + y)(x - y) + 5(x + y)² = 10 …… [3]
From [2]:
x = 1 - 2y …… [4]
Plug [4] into [3]:
(1 - 2y + y)(1 - 2y - y) + 5(1 - 2y + y)² = 10
(1 - y)(1 - 3y) + 5(1 - y)² = 10
1 - 4y + 3y² + 5 - 10y + 5y² = 10
8y² - 14y -4 = 0
2(y - 2)(4y + 1) = 0
y = 2 or y = -1/4
Plug y = 2 into [4]:
x = 1 - 2(2)
x = -3
Plug y = -1/4 into [4]
x = 1 - 2(-1/4)
x = 3/2
Hence, (x, y) = (-3, 2) or (3/2, -1/4)
====
25.
[(x - 2)/3] + [(y - 1)/2] = 5/6 …… [1]
(x - y)² + (x + y)(x - y) = 6 …… [2]
[1] * 6:
{[(x - 2)/3] + [(y - 1)/2]} * 6 = (5/6) * 6
2(x - 2) + 3(y - 1) = 5
2x - 4 + 3y - 3 = 5
2x = 12 - 3y …… [3]
[2] * 4:
{(x - y)² + (x + y)(x - y)} * 4 = 6 * 4
(2x - 2y)² + (2x + 2y)(2x - 2y) = 24 …… [4]
Plug [3] into [4]:
(12 - 3y - 2y)² + (12 - 3y + 2y)(12 - 3y - 2y) = 24
(12 - 5y)² + (12 - y)(12 - 5y) = 24
144 - 120y + 25y² + 144 - 72y + 5y² = 24
30y² - 192y + 264 = 0
6(x - 2)(5y - 22) = 0
y = 2 or y = 22/5
Plug y = 2 into [3]:
2x = 12 - 3(2)
2x = 6
x = 3
Plug y = 22/5 into [3]:
2x = 12 - 3(22/5)
2x = -6/5
x = -3/5
Hence, (x, y) = (3, 2) or (-3/5, 22/5)