設dy/dx=(x^0.5)/[(6+x)^0.5 -x^0.5],求y?
回答 (1)
dy/dx = √x/[√(6+x)-√x] = √x[√(6+x)+√x] /6 = [√(6x+x^2)+x]/6
= √[(x+3)^2-9]/6 + x/6, x ≧ 0
∴ y = (1/6)∫√[(x+3)^2-9] dx + x^2/12
令 x+3 = 3sec(t), 則 dx = 3sec(t)tan(t) dt
∴ ∫√[(x+3)^2-9] dx = ∫|3tan(t)|(3sec(t)tan(t)) dt
因為 x ≧ 0, x+3 = 3sec(t) 對應 0 ≦ t < π/2,
故前列積分式中 |tan(t)| = tan(t).
∴ ∫√[(x+3)^2-9] dx = ∫ 9sec(t)tan^2(t) dt
∫ 9sec(t)tan^2(t) dt = ∫ sec^3(t)-sec(t) dt
= ∫ sec^3(t) dt - ∫ sec(t) dt
= sec(t)tan(t) - ∫ tan(t) sec(t)tan(t) dt - ∫ sec(t) dt
= sec(t)tan(t) - ∫ sec(t)tan^2(t) dt - ∫ sec(t) dt
∴ ∫ sec(t)tan^2(t) dt
= (1/2){ sec(t)tan(t) - ∫ sec(t) dt }
∴ ∫√[(x+3)^2-9] dx
= (9/2) sec(t)tan(t) - (9/2) ∫ sec(t) dt
= (9/2) sec(t)tan(t) - (9/2) ln|sec(t)+tan(t)| + C
sec(t) = (x+3)/3,
tan(t) = √(sec^2(t)-1) = √[(x+3)^2-9]/3
∴ y = x^2/12+(1/6) ∫√[(x+3)^2-9] dx
= x^2/12 + (9/12) [(x+3)/3]√[(x+3)^2-9]/3
-(9/12) ln|(x+3)/3+√[(x+3)^2-9]/3| + C
= x^2/12 + (1/12)(x+3)√[(x+3)^2-9]
- (3/4) ln{(x+3)+√[(x+3)^2-9]} + C'
收錄日期: 2021-04-18 18:24:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200311091446AAWLjd0
檢視 Wayback Machine 備份