已知f(x)除于x²+x+1和(x+1)²时,餘式分別为x+5及x-1,求f(x)除于(x²+x+1)(x+1)的餘式?

2020-02-18 12:11 pm

回答 (2)

2020-02-18 2:46 pm
✔ 最佳答案
f(x) ÷ (x^2+x+1) 餘式 x+5
f(x) ÷ (x+1)^2 餘式 x-1
也就是說
   f(x) = p(x)(x^2+x+1) + x+5
        = q(x)(x+1)^2 + x-1
        = [q(x)(x+1)+1](x+1)-2

   f(x) = r(x)(x^2+x+1)(x+1) + ax^2+bx+c

   f(x) = [r(x)(x+1)+a](x^2+x+1) + (b-a)x+(c-a)
∴ b-a = 1, c-a = 5
∴ f(x) = r(x)(x^2+x+1)(x+1) +ax^2+(a+1)x+(a+5)
        = [r(x)(x^2+x+1)+ax+1](x+1) + (a+4)
∴ a+4 = -2, a = -6, b = -5, c = -1
所以, f(x) 除以 (x^2+x+1)(x+1) 餘式為 -6x^2-5x-1
2020-02-18 5:42 pm
f(x)=q(x)(x²+x+1)(x+1)²+a(x²+x+1)(x+1)+b(x²+x+1)+(x+5)
f(-1)=-1-1
b(1-1+1)+(-1+5)=-2
b=-6
f(x)除以(x^2+x+1)(x+1)餘式為-6(x²+x+1)+(x+5)=-6x²-5x-1


收錄日期: 2021-05-04 01:05:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200218041154AA8raXY

檢視 Wayback Machine 備份