Maths problem: how to do, thanks?

2020-02-17 6:41 pm

回答 (2)

2020-02-19 10:17 am
✔ 最佳答案
(a) AC=AE   (given)
∴ △ACE is an isos.△
=> ∠ACE=∠AEC . . . . . . . . . . . . . ①

Now,     ∠BCE=∠DEC   (given)
i.e.  ∠ACB+∠ACE=∠AED+∠AEC
Hence,from①: ∠ACB=∠AED ------------- (#)

Also, given that :AC=AE, BC=DE -------- (##)

From (#) & (##), △ABC≅△ADE (SAS) 

(b)
From (a) : ∠BAC=∠DAE (corr.∠s, ≅△s)
So,∠BAC+∠CAE=∠DAE+∠CAE
i.e.     ∠BAE=∠DAC
2020-02-17 7:25 pm
AC = AE.
∴ ∠ACE = ∠AEC,
∴∠ACB = ∠AED
依 SAS 定理, △ABC 全等 △ADE.
∴ ∠ABC = ∠ADE,
   ∠BAC = ∠DAE.
∴ ∠BAE = ∠DAC


收錄日期: 2021-04-24 07:44:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20200217104158AALJnwi

檢視 Wayback Machine 備份