請問x^x=x,x值為多少?
回答 (6)
x^x = x
兩邊開x次方得 x = x^(1/x)
於是 x^x = x^(1/x)
x = 1/x
x² = 1
x = ±1
請問x^x=x,x值為多少?
Sol
(1)
x>0
x^x=x
ln(x^x)=lnx
xlnx=lnx
xlnx-lnx=0
(x-1)lnx=0
X-1=0 or lnx=0
x=1 or x=1
x=1……………………………..
(2) x<0
x^x=x
Set y=-x
y>0
(-y)^(-y)=-y
y^(-y)=y
ln[y^(-y)]=lny
(-y)lny=lny
-ylny-lny=0
(-y-1)lny=0
-y-1=0 or lny=0
y=-1(不合) or y=1
x=-1……………………………
在C++程式語法中
^ 為 XOR
XOR有一種特性叫互斥
也就是說兩個一樣的數做XOR必為0
也就是說
x^x=0
那
x=0就是唯一的解啦
x^x = x
x^x - x = 0
x[x^(x - 1) - 1] = 0
x = 0 或x = 1
x = 0 時 0⁰ 無意義
x = 1
不過其中(- 1)²ⁿ = 1,(-1)²ⁿ⁺¹ = -1(n ∈ Z)
x = -1
x = ±1 #
x^x = x
=> x = x^(1/x)
=> x^1 = x^(1/x)
=> 1 = 1/x
=> x = 1
But (-1)^(-1) = 1 / (-1)^1 = 1/(-1) = -1
Thus x = 1 or -1
收錄日期: 2021-04-11 22:56:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20190811063338AAX6gNK
檢視 Wayback Machine 備份