設u=x^2,y=(u-x+1)/(2u-2x+3),求值域?

2019-05-18 12:45 am

回答 (1)

2019-05-18 5:25 pm
設u=x^2,y=(u-x+1)/(2u-2x+3),求值域?
Sol
y=(x^2-x+1)/(2x^2-2x+3)
x^2-x+1=2yx^2-2xy+3y
(2y-1)x^2+x(1-2y)x+(3y-1)=0
D=(1-2y)^2-4*(2y-1)(3y-1)>=0
(2y-1)[(2y-1)-4(3y-1)]>=0
(2y-1)(-10y+3)>=0
(2y-1)(10y-3)<=0
(y-0.3)(y-0.5)>=0
0.3<=y<=0.5
當y=0.5
(x^2-x+1)/(2x^2-2x+3)=1/2
2x^2-2x+2=2x^2-2x+3
0.3<=y<0.5


收錄日期: 2021-04-18 18:21:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20190517164542AAxYoUo

檢視 Wayback Machine 備份