✔ 最佳答案
f(x) = x e⁻ˣ
f'(x) = e⁻ˣ - x e⁻ˣ
f"(x) = -e⁻ˣ - (e⁻ˣ - x e⁻ˣ) = -2 e⁻ˣ + x e⁻ˣ
f'"(x) = 2 e⁻ˣ + (e⁻ˣ - x e⁻ˣ) = 3 e⁻ˣ - x e⁻ˣ
f⁽⁴⁾(x) = -3 e⁻ˣ - (e⁻ˣ - x e⁻ˣ) = -4 e⁻ˣ + x e⁻ˣ
------ (and so on)
It is found that the rule is: f⁽ⁿ⁾(x) = (-1)ⁿ⁺¹ n e⁻ˣ + (-1)ⁿ x e⁻ˣ
Hence, f ⁽⁶⁰⁰⁾(x) = (-1)⁶⁰¹ 600 e⁻ˣ + (-1)⁶⁰⁰ x e⁻ˣ
f ⁽⁶⁰⁰⁾(x) = -600 e⁻ˣ + x e⁻ˣ