設f(x)為一四次多項式函數,將f(x)分別除以x-1,x-2,x-3,餘式皆為48,又x²-9x+20為f(x)的因式,求f(6)=_____?

2019-02-02 8:02 pm

回答 (2)

2019-02-04 8:01 am
✔ 最佳答案
設f(x)=(ax+b)(x-1)(x-2)(x-3)+48
又x²-9x+20=(x-4)(x-5)為f(x)的因式,
故f(4)=(4a+b)6+48=0
4a+b=-8
f(5)=(5a+b)24+48=0
5a+b=-2
解得a=6,b=-32
f(x)=(6x-32)(x-1)(x-2)(x-3)+48
f(6)=4*5*4*3+48=288
2019-02-03 1:30 am
設f(x)為一四次多項式函數,將f(x)分別除以x-1,x-2,x-3,餘式皆為48-又x^2-9x+20為f(x)的因式,求f(6)=_____?
Sol
設f(x)=a(x^2-9x+20)(x-1)(x-2)+b(x^2-9x+20)(x-1)+c(x^2-9x+20)
f(1)=c*(1-9+20)=48
c=4
f(x)=a(x^2-9x+20)(x-1)(x-2)+b(x^2-9x+20)(x-1)+4(x^2-9x+20)
f(2)=b*(4-18+20)+4*(4-18+20)=48
6b+24=48
b=4
f(x)=a(x^2-9x+20)(x-1)(x-2)+4(x^2-9x+20)(x-1)+4(x^2-9x+20)
f(3)=a*(9-27+20)*2*1+4*(9-27+20)*2+4(9-27+20)=48
4a+16+8=48
a=6
f(x)=6(x^2-9x+20)(x-1)(x-2)+4(x^2-9x+20)(x-1)+4(x^2-9x+20)
f(6)=6*(36-54+20)*5*4+4*(36-54+20)*5+4*(36-54+20)
=6*2*5*4+4*2*5+4*2
=240+40+8
=288


收錄日期: 2021-04-30 22:45:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20190202120255AAQ7eEb

檢視 Wayback Machine 備份