各位数学大大,我想问问: 1. 1+1/(1+2)+1/(1+2+3)+......+1/(1+2+3+.....+99+100) = ? 2. 1/(1x2)+1/(2x3)+1/(3x4).....+1/(99x100)=? 备注:1/2=二分之一 ,请答我答案和计算方法.?

2018-12-31 2:59 pm
更新1:

1/(1+2)=三分之一哦

回答 (1)

2018-12-31 4:39 pm
✔ 最佳答案
Sol
1
1+1/(1+2)+1/(1+2+3)+......+1/(1+2+3+.....+99+100)
=Σ(k=1 to 100)_1/(1+2+3+…+k)
=Σ(k=1 to 100)_2/[k(k+1)]
=2Σ(k=1 to 100)_1/[k(k+1)]
=2Σ(k=1 to 100)_[(k+1)-k]/[k(k+1)]
=2Σ(k=1 to 100)_{(k+1)/[k(k+1)]-k/[k(k+1)]}
=2Σ(k=1 to 100)_[1/k-1/(k+1)]
=2*[(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+…+(1/100-1/101)]
=2*(1-1/101)
=2*100/101
=200/101
2. 1/(1x2)+1/(2x3)+1/(3x4).....+1/(99x100)
=Σ(k=1 to 99)_1/[k*(k+1)]
=Σ(k=1 to 99)_[(k+1)-k]/[k*(k+1)]
=Σ(k=1 to 99)_{[(k+1)/[k*(k+1)]-k]/[k*(k+1)]}
=Σ(k=1 to 99)_[1/k-1/(k+1)]
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+(1/99-1/100)
=1-1/100
=99/100


收錄日期: 2021-04-24 01:15:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20181231065944AAb415K

檢視 Wayback Machine 備份