✔ 最佳答案
(x^3 -1)(x^12+x^9+x^6+x^3+1) = x^15 -1
(x^3 -1)(x^12+x^9+x^6+x^3+1)
= (x^5 -1)(x^10+x^5+1)
兩邊除以(x-1)得
(x^2+x+1)(x^12+x^9+x^6+x^3+1)
= (x^4+x^3+x^2+x+1)(x^10+x^5+1)
(x^12+x^9+x^6+x^3+1) =
(x^4+x^3+x^2+x+1)(x^10+x^5+1)/(x^2+x+1)
明顯 x^2+x+1不是 x^4+x^3+x^2+x+1的因式,
用長除法計算得(x^10+x^5+1)/(x^2+x+1)
= x^8-x^7+x^5-x^4+x^3-x+1
故 x^12+x^9+x^6+x^3+1
=(x^4+x^3+x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)