In the quadratic equation
(k - 2)x^2 + 50x + 2k + 3 = 0, the roots are reciprocals of each other. Find the value of k.?
what the how do i do this
回答 (2)
Consider this general form:
ax² + bx + c = 0
Let the roots be α and β. The roots have these two useful relations:
αβ = c/a
α + β = -b/a
In this case the roots are reciprocals.
αβ = 1
c/a = 1
(2k + 3)/(k - 2) = 1
2k + 3 = k - 2
k = -5
(k - 2).x² + 50x + (2k + 3) = 0
Polynomial like: ax² + bx + c, where:
a = (k - 2)
b = 50
c = (2k + 3)
Δ = b² - 4ac (discriminant)
x₁ = (- b + √Δ)/2a
x₂ = (- b - √Δ)/2a
The roots are reciprocals of one another → x₁ = 1/x₂
(- b + √Δ)/2a = 1/[(- b - √Δ)/2a]
[(- b + √Δ)/2a] * [(- b - √Δ)/2a] = 1
(- b + √Δ).(- b - √Δ)/4a² = 1
(- b + √Δ).(- b - √Δ) = 4a²
b² + b.√Δ - b.√Δ - Δ = 4a²
b² - Δ = 4a² → recall: Δ = b² - 4ac
b² - (b² - 4ac) = 4a²
b² - b² + 4ac = 4a²
4ac = 4a²
c = a → recall: c = 2k + 3
2k + 3 = a → recall: a = k - 2
2k + 3 = k - 2
→ k = - 5
收錄日期: 2021-04-24 01:09:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20181024091501AApiXpm
檢視 Wayback Machine 備份