✔ 最佳答案
t = 2 * pi * sqrt(a^3 / (G * M))
a is the semi-major axis of the orbit. Let's just assume that it's circular
a = 92 + 1740 = 1832 km = 1832000 m = 1.832 * 10^(6) m
G = 6.67408 * 10^(-11) [m^3 / (kg * s^2)]
M = 7.34767309 * 10^(22) kg
2 * pi * sqrt(1.832^3 * 10^(18) m^3 / (6.67408 * 7.34767309 * 10^(-11) * 10^(22) [m^3 * kg / (kg * s^2)]) =>
2 * pi * sqrt(1.832^3 * 10^(18) s^2 / (6.67408 * 7.34767309 * 10^(11)) =>
2 * pi * sqrt(1.832^3 * 10^(18 - 11) / (6.67408 * 7.34767309)) seconds =>
2 * pi * sqrt(0.12538199457521700071906050543999 * 10^(7)) seconds =>
2 * pi * sqrt(1.2538199457521700071906050543999 * 10^6) seconds =>
7.0355403075440447587685610450475... * 10^3 seconds =>
7035.54 seconds