有關三角函數問題,請幫我看看 求f(x)=sec²(x/2)+csc²(x/2)的週期? 謝謝?

2018-10-09 11:07 am
更新1:

有關三角函數問題,請幫我看看 求f(x)=sec²(x/2)+csc²(x/2)的週期? 謝謝 我要問週期怎麼算喔! (A) pi /2 (B) pi (C) 2 pi (D) pi^2

回答 (4)

2018-10-09 2:20 pm
✔ 最佳答案
求f(x)=Sec^2 (x/2)+Csc^2 (x/2)的週期?
(A) π/2 (B) π (C) 2π (D) π^2
Sol
f(x)=Sec^2 (x/2)+Csc^2 (x/2)
=1/Cos^2 (x/2)+1/Sin^2 (x/2)
=Sin^2 (x/2)/[Cos^2 (x/2)Sin^2 (x/2)]+Cos^2 (x/2)/[Cos^2 (x/2)Sin^2 (x/2)]
=1/[Cos^2 (x/2)Sin^2 (x/2)]
=4/[4Cos^2 (x/2)Sin^2 (x/2)]
=4/Sin^2 x
f(x+π/2)=4/Sin^2 (x+π/2)=4/Cos^2 x
f(x+π)=4/Sin^2 (x+π)=4/Sin^2 x
(B)
2018-10-10 4:31 am
f(x) = sec²(x/2) + csc²(x/2)
    1     1
  = ------------ + -------------
   cos²(x/2)  sin²(x/2)
   sin²(x/2) + cos²(x/2)
  = ---------------------------
   cos²(x/2) sin²(x/2)    
       1
  = ---------------------------
   [ sin(x/2) cos(x/2) ]²
       1   
  = --------------------------------
   ¼ [ 2 sin(x/2) cos(x/2) ]²
     4   
  = ------------------  - - - - - - - - - - → 《sin 2θ = 2 sinθ cosθ 》  
   [ sin 2(x/2) ]²
    4   
  = --------    
   sin²x
∵ sin(x+π) = - sin x, ∴ sin²(x+π) = sin² x
        4    4   
∴ f(x+πn) = ---------------- = ------- = f(x)     
       sin²(x+πn)  sin²x
∴ 週期 = π   Ans: B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 完 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
什麼是週期(period)?
===============
A period is how long it takes for a wave to complete 1 full cycle.
eg. sin x has a period = 2π rad.(or 360°).
This means that the graph of sin x takes 2π rad. (or 360°) to complete 1 full cycle.
2018-10-09 11:48 am
f(x)=sec²(x/2)+csc²(x/2)...就是f(x)=1啊...
週期0?
2018-10-12 1:08 pm
希望大大們可以解答我的問題,謝謝!
問題1:什麼是週期(period)? 什麼是基本週期(fundamental period)?
問題2:這題三角函數問題是複選題還是單選題?
問題3:B) 的是什麼意思? 而(C) 的又是指什麼?


收錄日期: 2021-04-30 22:49:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20181009030717AAPZNCz

檢視 Wayback Machine 備份