✔ 最佳答案
方法一:
a - b =6
(a - b)² = 6²
a² - 2ab + b² = 36 …… [1]
ab = 3
4ab = 12 …… [2]
[1] + [2]:
a² + 2ab + b² = 48
(a + b)² = 48
a + b = ±√48
a + b = ±4√3
因為 (a + b)³ = a³ + 3a²b + 3ab² + b³
所以 a³ + b³
= (a + b)³ - 3a²b - 3ab²
= (a + b)³ - 3ab(a + b)
因為 (a + b)⁵ = a⁵ + 5a⁴b + 10a³b² + 10a²b³ - 5ab⁴ + b⁶
所以,a⁵ + b⁵
= (a + b)⁵ - 5a⁴b - 10a³b² - 10a²b³ - 5ab⁴
= (a + b)⁵ - 5a⁴b - 5ab⁴ - 10a³b² - 10a²b³
= (a + b)⁵ - 5ab(a³ + b³) - 10a²b²(a + b)
= (a + b)⁵ - 5ab[(a + b)³ - 3ab(a + b)] - 10a²b²(a + b)
= (a + b)⁵ - 5ab[(a + b)³ - 3ab(a + b)] - 10(ab)²(a + b)
= (±4√3)⁵ - 5×3×[(±4√3)³ - 3×3×(±4√3)] - 10×(3)²×(±4√3)
= ±9216√3 - (±2340√3) - (±360√3)
= ±6516√3
====
方法二:
a - b = 6 …… [1]
ab = 3 …… [2]
由 [1]:
a = b + 6 …… [3]
將 [3] 代入 [2] 中:
(b + 6)b = 3
b² + 6b - 3 = 0
b = [-6 ± √(6² + 4*3)] / 2
b = -3 ± 2√3
將b = -3 ± 2√3 代入 [3] 中:
a = 3 ± 2√3
a⁵ = (3 ± 2√3)⁵
a⁵ = 3⁵ ± 5×3⁴×(2√3) ± 10×3³×(2√3)² ± 10×3²×(2√3)³ ± 5×3×(2√3)⁴ ± (2√3)⁵
a⁵ = 243 + (±810√3) + (±3240) + (±2160√3) + (±2160) + (±288√3)] …… [4]
b⁵ = (-3 ± 2√3)⁵
b ⁵ = (-3)⁵ ± 5×(-3)⁴×(2√3) ± 10×(-3)³×(2√3)² ± 10×(-3)²×(2√3)³ ± 5×(-3)×(2√3)⁴ ± (2√3)⁵
b⁵ = -243 + (±810√3) - (±3240) + (±2160√3) - (±2160) + (±288√3)] …… [5]
[4]+[5]:
a⁵ + b⁵ = 2×(±810√3) + 2×(±2160√3) + 2×(±288√3)]
a⁵ + b⁵ = ±6516√3